
ePrivateEye: To the Edge and Beyond!
Christopher Streiffer, Animesh Srivastava, Victor Orlikowski, Yesenia Velasco,

Vincentius Martin, Nisarg Raval, Ashwin Machanavajjhala, Landon P. Cox
Computer Science, Duke University, USA

ABSTRACT
Edge computing offers resource-constrained devices low-
latency access to high-performance computing infrastructure.
In this paper, we present ePrivateEye, an implementation of
PrivateEye that offloads computationally expensive computer-
vision processing to an edge server. The original PrivateEye
locally processed video frames on a mobile device and de-
livered approximately 20 fps, whereas ePrivateEye transfers
frames to a remote server for processing. We present ex-
perimental results that utilize our campus Software-Defined
Networking infrastructure to characterize how network-path
latency, packet loss, and geographic distance impact offload-
ing to the edge in ePrivateEye. We show that offloading video-
frame analysis to an edge server at a metro-scale distance
allows ePrivateEye to analyze more frames than PrivateEye’s
local processing over the same period to achieve realtime
performance of 30 fps, with perfect precision and negligible
impact on energy efficiency.

1 INTRODUCTION
Image processing is increasingly important for mobile appli-
cations, such as augmented-reality, mobile-gaming, and video-
streaming. Modern system-on-a-chip (SoC) designs have un-
dergone rapid improvements in CPU and GPU processing
capabilities, but, as a result of power and space constraints,
these platforms cannot duplicate the parallelism, straight-line
speed, or large memories of high-end servers. For example, a
high-end GPU may consume 500 Watts of power, whereas a
high-end SoC GPU will consume fewer than 10 Watts. Sim-
ilarly, high-end smartphones rarely offer more than 4GB of
RAM, whereas mid-range servers offer 128GB of RAM. This
resource gap significantly limits the quality of mobile image-
processing applications.
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Edge computing is an approach to compute infrastructure
that places small data centers geographically close to clients.
In recent years, both industry and academia have undertaken
initiatives related to edge computing, including cloudlets [19],
fog computing [3], and micro data centers [1]. The goal of
edge computing is to give resource-constrained clients access
to greater compute, memory, and storage resources than are
available locally, and to provide that access over a higher-
quality connection than is possible over the wide area. Prior
research has sought to close the performance and energy gaps
between resource-poor devices and server-side infrastructure
through remote execution and code offload [2, 6–8, 13, 15,
16], and image-processing applications provide natural use
cases for offloading computation to edge servers.

Edge computing promises to address one of the biggest
problems with code offload for realtime image processing: net-
work latency. Realtime image-processing applications often
require results within tens of milliseconds, and many campus,
municipal, and regional networks offer both the capacity (e.g.,
fiber-optic networks) and software-defined networking (SDN)
orchestration to establish low-latency and high-bandwidth
paths between sensors and edge clusters.

The PrivateEye [18] access-control framework for visual
information is an example of a system that could benefit from
edge computing. PrivateEye defines a generic two-dimensional
special shape that is easy for users to draw, e.g., on a piece
of paper, on a whiteboard, or within a projected presentation,
and easy for software on a recording device to identify in
realtime. The original PrivateEye implementation performed
all marker-recognition locally on a mobile device and could
process frames at a rate of 20 fps.

In this paper, we present an edge-enabled version of Private-
Eye called ePrivateEye. ePrivateEye differs from the original
PrivateEye in one significant facet: it offloads marker detec-
tion to an edge server. We explore different network and server
configurations for running ePrivateEye and provide bench-
mark evaluations for each. In specific, we measure frames
per second (fps), battery consumption, and precision/recall
under ePrivateEye. The three configurations consist of marker
detection running locally on the mobile device, running on a
wireless access point, and running on a GPU server connected
directly to the access point. We also perform experiments
with our campus SDN to control network behavior in order to
understand how “well provisioned” the path between a record-
ing device and an edge server must be to support ePrivateEye.
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We envision the system running within an enterprise setting
where SDN could be utilized to provide secure, fast-path
access to the edge server running ePrivateEye.

Our contributions can be summarized as follows:

• We evaluate ePrivateEye under several network and
server configurations, including offloading work to
an access point, to an in-building server, and to an
off-campus server.
• We leverage our campus SDN to evaluate ePrivate-

Eye under metro-scale geographic distances between
a device and server.
• We show that offloading marker-detection to an edge

server at a metro-scale distance allows ePrivateEye to
analyze 50% more frames than PrivateEye’s local pro-
cessing over the same period, with perfect precision
and negligible impact on energy efficiency.

The remainder of the paper is structured as follows. Sec-
tion 2 provides background on PrivateEye and the motivation
behind running the service on an edge server. We provide the
inner workings of PrivateEye in Section 3. Section 4 presents
the design principles that guided our work. Section 5 provides
system implementation details, and discusses how SDN can
be utilized to improve network performance. Sections 6, 7
and 8 provide the results from our experiments, explores the
feasibility of ePrivateEye on SDN and cloud infrastructure,
respectively. Next, Section 9 presents a brief discussion on
ePrivateEye in the context of SDNs and cloud. Section 10 pro-
vides insight on related work, and details other applications
that have shown success at offloading processing functionality.
Finally, Section 11 provides the conclusion of our work.

2 BACKGROUND AND MOTIVATION
With the ever-more evident need for sensitive data protection
in businesses and the provision of privacy guarantees to appli-
cation users, PrivateEye has shown to be a viable solution in
protecting data in real time. PrivateEye uses advanced com-
puter vision methods to detect and block regions within a
frame that contain sensitive information. Integrated within the
Android camera subsystem, PrivateEye functions as middle-
ware between the camera driver and applications accessing
the camera service. PrivateEye is able to deliver frames at
a median rate of 20 FPS [18], providing reasonable quality
of service for users while simulataneously blocking sensitive
regions within the video frames.

A deeper look inside PrivateEye’s system design reveals
that PrivateEye runs in two modes: (1) Detection, and (2)
Tracking. In detection mode, PrivateEye performs analysis
on incoming frames to determine which regions have been
marked public by the user. During tracking mode, Private-
Eye finds the location of the last detected public region in
incoming frames. While detection mode is computationally

(a) (b)

Figure 1: (a) A region on a whiteboard marked as public
using PrivateEye’s marker. (b) An app’s view while cap-
turing the same region using PrivateEye’s software en-
abled smartphone.

intensive (slow), tracking is conversely light on computation
(fast). As a result, PrivateEye runs in detection mode periodi-
cally (on 10% of the frames) and employs tracking mode in
the intervening intervals.

While this method of operation helps PrivateEye to achieve
a high frame delivery rate, the use of tracking inherently re-
sults in occasional inaccuracies in determining the location of
the public region and causes a small drop in recall. Further-
more, since computer vision algorithms are imperfect, the use
of tracking can result prolonged exposure of a region that was
wrongly judged as public during the most recent execution of
detection mode.

Edge computing [10] offers an alternative to centralized
computing, in that resource-constrained devices are able to
connect to powerful, geographically-proximal endpoints. Sce-
narios like home and enterprise networks can be tuned to
better serve clients. Such an edge-computing based solution
can significantly overcome the issues faced by PrivateEye.
Specifically, the compute intensive operations can be per-
formed remotely enabling continuous detection mode execu-
tion. Also, a good connectivity between the edge server and
the client can ensure higher rate of frame delivery. This forms
the motivation behind exploring the feasibility of PrivateEye
as an edge computing based system, ePrivateEye.

3 PRIVATEEYE OVERVIEW
Before we dive into the details of ePrivateEye’s system de-
sign, we provide some details of PrivateEye’s inner workings.
PrivateEye is a system whose aim is to provide more control
over the information being accessed by a third-party app to
the user. PrivateEye focuses on two-dimensional regions and
takes a privacy marker approach [17] wherein a user marks
a two-dimensional area as a public region using a special
marker as shown in Figure 1a. Subsequently, when a camera-
enabled application captures the same two-dimensional region
when using a PrivateEye enabled smart device, PrivateEye
intercepts the image data obtained by the camera, detects
the marked region, blocks the remainder of the region, and
delivers the data to the application (Figure 1b).
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Figure 2: Series of computer vision algorithms applied on
image data under PrivateEye.

Inside PrivateEye’s logic for discerning public and private
regions, each individual camera frame undergoes significant
processing. First, the colorspace of the frame is converted
from color to grayscale; most computer vision algorithms op-
erate in grayscale in order to achieve faster results. Next, the
grayscale image is scaled down to a size of 800 × 480 for fur-
ther processing. PrivateEye detects edges in the frame using
the well-known Canny [5] algorithm. After edge detection,
the system detects contours in the edge-based image using
Suzuki’s algorithm [22]. The algorithm returns the contours
in a tree data structure which preserves the contour hierarchy.
PrivateEye runs an approximation to find a parent contour that
can be approximated as a rectangle and a child contour that
has 12 corners with area at least 50% of the parent rectangle
contour. This is the region marked by the user. Finally, the
system finds the bounding box for the marked region and
blocks everything else in the image.

As mentioned earlier, since the marker detection algorithm
is slow, PrivateEye runs the detection algorithm periodically.
For other frames, the system employs tracking on the last
observed marked region in the current frame using the Lucas-
Kanade optical-flow-in-pyramids technique [4]. Figure 2 de-
picts the series of transformations a frame experiences under
PrivateEye.

The entire PrivateEye module is integrated into the trusted
portion of Android itself; PrivateEye is contained within the
camera service, which resides between the camera sensor
and the application framework. Every frame captured from
the camera sensor is received by the camera service, before
being sent to the associated application. PrivateEye moni-
tors the frames received by camera service and applies all
required image transformations before sending the frame to
the application.

ePrivateEye is an extension of PrivateEye and uses the
same techniques employed in PrivateEye. To get more details
about the PrivateEye, we would encourage the readers to read
the original work [18].

4 DESIGN PRINCIPLES
In this section we present the design principles behind ePri-
vateEye. Our primary goal was to achieve near real-time
performance for camera apps. With this as our motivation, we
designed the server and client component of ePrivateEye to
minimize network latency, while also reducing traffic size.

Reduce Client-side Computation: Since the client runs on
a resource constrained device, we identified all the compute-
intensive functionality and offloaded it. When a frame is
received by the ePrivateEye client running inside the camera
service, it is processed in the following fashion: (1) A copy
of the frame data is saved, and a numeric identifier associated
to it, (2) A grayscale color conversion is performed, and (3)
The grayscale image data is downsized to a resolution of
400× 240. The remainder of the image transformations shown
in Figure 2 are part of the server component of ePrivateEye.
After subsequent processing by the server that results in the
marked region information being available for the frame, the
client blocks the region outside the marked region and returns
the modified frame data to the camera service.
Reduce Network Traffic: Again, since the ePrivateEye client
runs on a resource constrained device, it is often the case that
the software on such devices is designed to save power by re-
ducing the amount of data transmitted, where possible. In our
case, sending a frame to the ePrivateEye server at its original
resolution (e.g. 1280 × 960) would cost significant time and
energy, thereby negating some of the gains we would hope to
achieve through offloading processing. We instead chose to
reduce the amount of traffic sent by the client to the server by
performing the sequence of relatively compute-inexpensive
image transformations described above before sending the
frame to the server. Our original frame data was encoded in
NV12 format frames. Since edge detection performs satis-
factorily on grayscale images, each frame is downsampled
to this format, resulting in a size savings of 33%. We then
further downsample the data by converting it to a resolution
of 400 × 240, as the computer vision algorithms we use pro-
vide acceptable performance at that resolution. Through these
transformations, we reduce the size of the data transferred by
the client from 1280 × 960 × 1.5 to 400 × 240.

On the server side, we reduce the amount of traffic sent to
the client by returning the coordinates of the detected regions
only, rather than the masked frames.

By making the design choice to perform image blocking
transformations on the client, we were able to reduce the
total amount of traffic significantly. As mentioned earlier,
these operations have a small computational overhead; the
reduction in transferred data size makes the slightly increased
computational cost of retaining these operations on the client
a worthwhile trade.
Minimize Latency: PrivateEye is implemented to interact
in a non-blocking fashion with the camera service. In this
design, the camera service submits a frame to PrivateEye for
processing, before making a request for the most recently
processed frame. If the frame is available, PrivateEye will
return the masked frame to the service. Otherwise, no frame
is returned and the camera service will wait for the next frame
to be received from the camera sensor.
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To minimize latency between the client and server, we
made several modifications to the TCP sockets maintained by
each. On the client side, we disable Nagle’s algorithm on each
socket. Nagle’s algorithm purposefully delays frames in order
to reduce the number of TCP packets sent over the network,
and thereby adversely affects latency sensitive applications.
Disabling the algorithm forces packets to be sent over the
socket as soon as they are received, thus reducing latency.
On the server side, we look to reduce the number of read
syscalls made by the server by modifying the receive buffer.
We only allow for the server to make a read on a socket once
a certain number of bytes have arrived. We set the number of
bytes to be equivalent to the total size of the expected frame.

To minimize latency when transmitting across the metro-
politan network, we utilize Software Defined Networking
(SDN) to control the path along which the data is transmitted.
This allows for a “fast path” to be established between the
access point (AP) and server. This implementation will be
discussed in more detail in the following section.

Camera Device Driver

Camera
Service

ePrivateEye
Client

App Framework

ePrivateEye
Server

TCP

Android OS Edge Server

Figure 3: ePrivateEye architecture. The client component
runs as part of camera service, a trusted module of An-
droid OS. The client and server maintain a persistent
TCP connection for as long as the app session runs.

5 IMPLEMENTATION
In this section we provide the implementation details of ePri-
vateEye. We also discuss the various network configuration
used for the evaluation purposes. We implemented ePrivate-
Eye client by modifying the Android Open Source Project
(AOSP) version of Android 6.0.1. Our prototype currently
runs on a Nexus 5 smartphone. We implemented ePrivateEye
server as a standalone desktop application running on Linux,
using the OpenCV libraries to perform various computer vi-
sion tasks. In our implementation, the version of OpenCV
used is 2.4.13.

5.1 ePrivateEye Design
ePrivateEye Client: The client module has three primary
responsibilities. The first is to receive frames from the camera
service, and send them to the server for processing. The client
maintains a configuration file which contains the server’s IP

and port. When ePrivateEye is first instantiated on the device,
it opens 3 persistent TCP connections with the server. As
soon as the client receives a frame, it places the frame on a
queue, InQueue, for processing. At this point, a thread with a
dedicated TCP connection retrieves the frame from InQueue
and sends the frame to the server for processing. The second
responsibility is to apply the requisite mask to the frame once
a response has been received from the server, and to enqueue
it onto another queue that the client maintains, OutQueue.
Upon being enqueued in OutQueue, the frame for which
the mask information has been received is dequeued from
InQueue. The client’s final responsibility is to communicate
to the camera service that the processed frame is now ready
to be sent to user-level apps.
ePrivateEye Server: The server module runs an event-driven,
desktop version of the original PrivateEye. The primary re-
sponsibility of the server is to perform the computationally
expensive marker detection algorithm. The server receives the
frame from the client and immediately begins looking for any
marked areas. If the server detects a marked region, it sends
the corresponding bounding box coordinates which enclose
the marked region to the client. Otherwise, the server returns
a null response for the frame.

5.2 Server Configurations
Both the client and server modules are designed to be com-
pletely portable. This allows for us to construct varying net-
work configurations around the client and server for evalua-
tion purposes. Within our work, we consider three different
network configurations running ePrivateEye, and compare the
performance against the original PrivateEye running within
a local configuration on the mobile device. Because these
configurations are applicable to an enterprise setting, we as-
sume that all transmitted data never leaves the confines of the
network, and thus remains private from the public internet.
Edge: The edge configuration consists of ePrivateEye run-
ning on an Access Point (AP). We configured a laptop with
a 1.3 GHz Intel Core M CPU and 8 GB of RAM as the AP.
The mobile device connects to the AP in order to establish a
bridge to the internet. In doing so, the mobile device is able
to directly access ePrivateEye. In this configuration, the client
and server are separated by a single hop, and communicate us-
ing the 802.11ac wireless protocol, with a maximum possible
transmission bandwidth of 433 Mb/s.
Building: The building configuration consists of ePrivateEye
running on a server connected to the same wireless router as
the mobile device. The server has the same specs as those
described in the edge configuration. In this configuration,
the mobile device and server are within close proximity of
one-another and communicate over the same network using
802.11n, with a maximum bandwidth of 300 Mb/s.
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Figure 4: Metro configuration: The AP resides within the
American Tobacco Campus (1). The AP connects to a
Cisco 4500X SDN switch located within ATC, and tran-
sits across fiber to an Arista 7050 SDN switch in TelCom
(2). The switch transits once more over fiber to a final
Cisco 4500X SDN switch located within Fitzpatrick East
datacenter, which connects via fiber to a server located in
the same datacenter that contains a Telsa P100 GPU (3).
The total line distance between the AP and server is 2.85
miles. The ping time between the two is 0.5ms.

Metro: The metro configuration consists of ePrivateEye server
and the client being separated across a metropolitan area. The
server is equipped with 6 Intel Xeon Processor 2.10 GHz v4
CPUs with 128 GB of RAM. As can be observed in Figure
4, the total distance between the client and server is more
than 2 miles. Because of this large distance, we utilize Duke’s
SDN infrastructure to maintain control over the path through
which the communication must occur. In this configuration,
the mobile device connects directly to the AP, and the AP con-
nects to the server across a path primarily composed of fiber.
Because the transmission time across fiber is approximately
two-thirds of the speed of light [21], this line of communi-
cation offers the fastest possible path between the AP and
server. The maximum bandwidth between the AP and server
is 1 Gb/s and has an approximate ping time of 0.593 ms.

In order to ensure maximum bandwidth and minimal la-
tency, we re-use the previously described AP configuration to
create a bridge between the mobile device and server. In this
configuration, the AP uses a Belkin USB-C Ethernet adapter
to interface with the SDN infrastructure. The mobile device
connects to the AP using the 802.11ac wireless protocol. The
AP serves as a bridge between the mobile device and remote
server. As a result of the control of the forwarding elements
afforded by the SDN, the AP and server appear to be sepa-
rated by only a single hop. The maximum possible bandwidth
between the server and client is 433 Mb/s. As a result of the
near-instantaneous transmission between the AP and server,
however, this configuration allows for similar performance as
if ePrivateEye was running on the AP.
SDN Fast Path: We leverage Duke’s SDN infrastructure to
construct a fast-path between the AP and server, eliminating

Figure 5: SDN configuration. The top path represents the
typical production path through the network, while the
bottom path represents the SDN path which traverses
two Cisco 4500X and one Arista OpenFlow switches. The
choice of path is selected through a controller not pic-
tured in this diagram.

any unpredictable sources of latency that might have been
incurred along the normal production path. In a production en-
vironment, SDN would provide the ideal setting for deploying
ePrivateEye because of its ability to create on-the-fly firewall
policies, and because it can provide a trusted, fast-path con-
nection between the client and server. Utilizing Duke’s SDN
allowed us to construct a path that is primarily fiber and con-
sists of the following hops: (1) The Nexus 5 connects to the
AP using 802.11ac which creates a bridge to the SDN in-
frastructure across a Belkin USB-C Ethernet adapter. (2) The
Ethernet adapter connects to a Cisco 4500X OpenFlow switch.
(3) The first switch connects to a second OpenFlow switch (an
Arista 7050) via a DWDM. (4) The second switch connects
to a third OpenFlow switch (another Cisco 4500X) located in
one of Duke’s primary datacenters. (5) The third OpenFlow
switch is connected via fiber to a Tesla P100 GPU-enabled
server running the ePrivateEye server software. Please refer
to Figure 4 for an approximation of this route. The connec-
tion between the AP and first OpenFlow switch is a standard
copper Ethernet cable, but all remaining links in the topology
are using fiber optic cable.

As can be observed in Figure 4, the line distance between
the AP and server is approximately 2.85 miles, while the ping
time between the two is approximately 0.5ms. As a result
of the fiber links and the programming of the forwarding
elements, the fast path very nearly gives the impression that
the AP is connected directly to the server. Since the mobile
device connects directly to the AP, however, this configuration,
in reality, contains a total of 5 hops between the device and
the server.

Figure 5 shows both the typical network configuration, and
the SDN configuration for the paths between the AP and
server. When the packets traverse the production path, they
must be processed by firewalls and other network elements
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that can add non-deterministic latency to the communica-
tion stream. Using Duke’s SDN, these sources of unexpected
latency can be bypassed through the programmatic control
of the forwarding path between the AP and the server. This
ensured that our data took a path that resulted in minimal
variance for our measurements.

6 EVALUATION
ePrivateEye uses the same computer vision techniques that
are used in the existing system, PrivateEye. ePrivateEye is
designed to provide better performance and realtime app ex-
perience to a user. Therefore, we focus our evaluation on the
performance aspect of the system under various settings. We,
specifically, want to answer the following:

(1) Can ePrivateEye achieve real-time frame delivery to
an app?

(2) Can ePrivateEye continue to provide reliable recog-
nition of marked regions?

(3) What is the cost of running ePrivateEye on a resource
constrained smartdevice?

(4) How does increase in number of marked regions in
the camera view affect ePrivateEye’s performance?

(5) What are the network characteristics required to sup-
port smooth functioning of ePrivateEye?

To answer the first two questions, we prepared a video
benchmark with typical camera settings and camera move-
ments. We used these videos to compute frames per second
(fps) delivery, precision, and recall with which ePrivateEye
reveals public regions. Next, we measured the power con-
sumption, CPU usage, and memory consumption to show the
impact of running ePrivateEye on a smartdevice’s resources.
Finally, we evaluated the impact of multiple marked regions
on the scalability of our system.

To understand the network support required for a good
performance, we investigated the metro server configuration
where the server and client are separated by a distance of
2.8 miles. Specifically, we measured the impact of network
delays and packet losses on the frames per second delivery.
Further, we investigated the case of cloud infrastructure where
ePrivateEye server is run on Amazon Web Server (AWS).

6.1 Experiment Setup
Video Benchmark: To carefully study the accuracy and im-
pact of ePrivateEye for different camera settings and motions,
we developed a simple video benchmark. We recorded several
videos, each 20 seconds in length, at a resolution of 1280×960
at 30 fps using a Nexus 5 smartphone. The average bitrate for
each video was computed to be 9321.33 kb/s.

We focused on three different two-dimensional regions:
whiteboard, presentation, and laptop screen. We marked a
public region on each two-dimensional region and recorded

the video under the following three camera motions: (1) Still:
the camera was steady and remained focused on the marked
region for the entire video, (2) Spin: the camera rotated while
remaining focused on the marked region, and (3) Scan: the
marked region first moved out of the camera view and then
came back in. The three camera motion still, scan and spin
simulate the scenario of still photography, video recording,
accidental capture of public regions, and changing orientation
of the recording device. We recorded videos for all the three
two-dimensional regions under the three different camera
settings. As a result of space constraints, we only show results
obtained for public regions marked on whiteboard.

To test ePrivateEye, we modified the camera service to read
the pre-recorded video files and load them into the memory.
When a camera frame is delivered from the camera sensor
to the camera service, the camera service replaces the frame
data with the data coming from the pre-recorded videos and
passes them to the apps. For the app, the frames appear to
arrive directly from the camera sensor. Using this setup, we
measure precision, recall, and performance of ePrivateEye
under different scenarios.
ePrivateEye Setup: Our goal is to show the performance of
the edge-computing based system, ePrivateEye, under each
of several different scenarios and, at the same time, present a
comparison with the local-computing based system, Private-
Eye. Therefore, we configured ePrivateEye server in different
ways to simulate those scenarios: (1) On-device: where the
server runs on the smartphone; this simulates the previous
system PrivateEye, (2) Edge: where the server runs on an
access point to which the smartphone (ePrivateEye client) is
connected directly, (3) Building: where the ePrivateEye server
is reachable via a router, and (4) Metro: where the server and
client are separated physically by a large distance and con-
nected through different networks. The details of the various
server configurations are previously described in Section 5.2.

There is one subtle difference between PrivateEye and
on-device configuration of ePrivateEye. As noted earlier in
Section 3, PrivateEye achieves higher fps by running primar-
ily in tracking mode, with periodic transitions to detection
mode. We must note, however, that in our on-device configu-
ration ePrivateEye performs detection on every frame; we did
so in the interest of having the code remain invariant while
performing comparisons using differing server configurations.

6.2 Frames per Second
To compute fps we set the still, spin, and scan videos to loop,
replay them for 30 seconds, and record the times at which
each frame is finished processing. We then process the logs
to compute the rate of frame delivery for each configuration.

As can be observed across Figures 6, 7, 8, ePrivateEye sig-
nificantly outperforms PrivateEye, achieving a median frame
rate of ≈ 30 fps across each remote configuration. Because the
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Figure 6: FPS results for the still camera movement.
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Figure 7: FPS results for the spin camera movement.
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Figure 8: FPS results for the scan camera movement.

processing time for a single image on the server was ≈ 6ms,
ePrivateEye can handle frame rates exceeding 30 fps. In com-
parison, the on-device configuration achieves a median frame
rate of ≈ 5 fps, equivalent to an 83.33% reduction in perfor-
mance. Although PrivateEye has proven to have a frame rate
of ≈ 20 fps, the detection of marked regions in consecutive
frames causes the performance to deteriorate. ePrivateEye
offers a significant improvement in quality of service over
that provided by PrivateEye, by running in real-time with no
noticeable lag or delay.

While the median fps for all the camera motion settings
are around 5 fps, the on-device configuration delivers some
frames at ≈ 18 fps for still and scan camera motion settings.
In case of still the marked region is in focus, which eases
the task of detection for the software. In case of scan, since
the view is constantly changing, the frame data can become
blurry, and the software does not always have as many distinct
features in the image to process. This results in occasional
fast processing of the frame and faster delivery of the frames.
In the spin case, the object stays in the focus throughout the
video, but the orientation changes constantly. This causes the
detection to run on every frame with many features to process,
and, as a result, never reaches a high rate of frame delivery.
This observation is in agreement with the frames per second
evaluation of PrivateEye [18].

Between the remote configurations, the edge configuration
produces the most consistent results with the lowest amount
of standard deviation. As this configuration establishes the
shortest path between the client and server, these results are
expected. The metro configuration produces the second most
consistent results, as can be observed in Figures 7 and 8.
Although the standard deviation for the building configuration
is higher than the other two configurations, it still achieves a
median frame rate of ≈ 30 fps.

The reason that the metro configuration has a more consis-
tent performance than the building is because of two reasons.
First, the SDN establishes a fast path between the AP and
server which has minimal overhead due to the selection of the
path. Second, within the building configuration, the mobile
device and server both utilize the 802.11n wireless, whereas
within the metro configuration, the mobile device communi-
cates using the 802.11ac protocol, which has a higher max-
imum bandwidth. Further, because the mobile device and
server are both connected to the router over the wireless
connection, there is a higher probability for packet loss and
latency to occur. This shows the importance of using SDN –
even though the client and server are separated by a few feet
in the building configuration, the metro configuration, where
the client and server are separated by 2.85 miles, produces
superior performance results.

Overall, these results show that realtime performance can
be achieved across each remote configuration of ePrivateEye,
with the edge offering the least deviation from the optimal
performance of 30 fps.

6.3 Precision and Recall
To compute precision and recall, we divide the prerecorded
videos into pixel cells of size 5 × 5. We manually mark all the
cells inside the marked region as public and cells outside the
marked region as private. Our system should reveal public
cells and block private cells. We consider a pixel cell from a
frame to be blocked if none of it is visible in the corresponding

7
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frame processed by ePrivateEye; otherwise we consider the
cell to be revealed by our system. This is a strict enforcement
as we assume that a partially visible cell can have enough
information to reveal the entire cell.

Formally, for a given frame, let Ct and Cr be the number
of cells marked public and number of cells revealed by the
system, respectively. Then we define precision and recall for
that frame as follows:

precision =
|Ct ∩Cr |

|Cr |
recall =

|Ct ∩Cr |

|Ct |

While precision represents how secure is our system, recall
represents how usable the camera frame is to an app.
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Figure 9: Precision and recall for still camera motion.
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Figure 10: Precision and recall for spin camera motion.

Figures 9, 10, 11 show that ePrivateEye achieves a 100%
precision for all camera motion settings. This indicates that
ePrivateEye does not let any sensitive information through to
any app. Further, the evaluation reveals that precision and re-
call results remain constant across each network configuration
running ePrivateEye. This is an expected outcome as change
in network settings has nothing to do with the detection of
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Figure 11: Precision and recall for scan camera motion.

marked regions as long as the frame data doesn’t get modified
while in-transit. This indicates that running ePrivateEye in
any remote configuration will produce exceptionally strong
precision results.

On-device configuration provides a median precision of
0.96 in case of spin camera setting, while achieving a 100%
precision for still and scan settings. In still camera setting,
the camera is focused on the marked region which helps in
picking up the features to perform detection effectively on the
device.

The precision for on-device configuration under spin cam-
era setting drops slightly. Under this camera motion, although,
the marked region stays in focus of the camera, its orientation
changes constantly which makes the detection of key features
slightly difficult. However, for the same camera setting, all the
remote configurations achieve higher precision. We suspect
that this difference in precision values across configurations
comes from the OpenCV libraries used by the ePrivateEye.
The OpenCV libraries undergo different optimizations for
them to work on resource constrained ARM-based platform.
As the remote configurations have significantly stronger pro-
cessing power, they are able to take full advantage of the
functionality that OpenCV has to offer.

The cost of higher precision for ePrivateEye comes with
the tradeoff of decreased recall performance. In comparison
to PrivateEye, ePrivateEye has slightly weaker recall results.
Because recall is indicative of usability, the remote configura-
tions of ePrivateEye underperforms in this category. However,
the performance does not suffer too much as ePrivateEye
still achieves a minimum recall of 82%. Overall, although the
recall performance decreases when using ePrivateEye, the
perfect precision coupled with the high rate of frame delivery
as observed in the previous section, makes ePrivateEye the
superior implementation in terms of both security and QoS.

8



ePrivateEye SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA

6.4 Resource Usage
We wanted to investigate the impact of running ePrivateEye
on a mobile device’s resource usage. To do this, we designed
an experiment where we recorded a 30 second video contain-
ing one marked public region. We set the camera setting to
be spin. We ran this prerecorded video 5 times through ePri-
vateEye and measured CPU usage (in percentage), memory
usage (in MB) and power consumption (in mW). For this
experiment, we fixed the smartphone’s brightness level to 50%
and rebooted the device between trials. During all the trials,
we kept the wireless radio active.

We took measurements every 100 ms using Trepn [14], a
performance monitoring tool developed by Qualcomm. Trepn
reports very accurate measurements for the devices that come
with Qualcom’s snapdragon processor and Nexus 5 is one of
them. We used this app and recorded the CPU usage, memory
consumption and power consumption.
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Figure 12: Memory usage for analyzing a video for 30
seconds under different configurations for ePrivateEye
server.

In case of memory consumption, offloading compute in-
tensive processing has no impact. The ePrivateEye client
maintains a pre-allocated memory to hold a constant number
of frames that needs to be processed by the server component.
Due to this, we do not see any significant change in memory
consumption (Figure 12).

Figure 13 shows that ePrivateEye server running on the
device causes a higher median CPU load (≈ 50%) than that of
the case when the server runs remotely (≈ 40%). Interestingly,
even after offloading the computationally intensive part of
processing, the difference between the CPU load is not very
high. The reason is that in case of remote processing (edge
, building and metro), the CPU stays active as it can process
significantly more frames (real-time processing). As shown
earlier, ePrivateEye processes 500% more frames per second
when it is offloaded.

Similarly, while the power consumption across all the con-
figurations appear comparable (Figure 14), the real gains
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Figure 13: CPU load for analyzing a video for 30 seconds
under different configurations for ePrivateEye server.
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Figure 14: Power consumption for analyzing a video for
30 seconds under different configurations for ePrivateEye
server.

can only be understood when the results are looked with the
number of frames processed per second. Figure 14 and Fig-
ure 7 show that on-device processing consumes ≈ 144 J while
delivering frames at a median rate of 5. On the other hand,
processing frames on a remote server, ePrivateEye consumes
≈ 156 J while delivering frames at a median rate of 30.

6.5 Scalability
To measure scalability, we expand our video benchmark to
include three additional 20 second videos containing 1, 2, and
3 marked regions respectively under the camera setting still.
These videos were recorded at the previously mentioned reso-
lution and frame rate on a Nexus 5 smartphone. The purpose
of adding more marked regions to the frame is to increase
the number of computations required to run the detection
algorithm. As more regions are introduced, the computational
complexity increases which places a larger load on the CPU
on a per-frame basis. When measuring the performance, we
replay these videos for their full duration and record the pro-
cessing time for each frame.
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Figure 15: (color) Median rate of frame delivery under
different configuration of ePrivateEye server.

The evaluation results for PrivateEye and ePrivateEye can
be observed in Figure 15. As is expected, the fps perfor-
mance for PrivateEye decreases as the number of marked
regions increases. The median frame rate for the video with
1 marked region is 20 fps, while the median performance for
three marked regions is 5 fps, corresponding to a 75% perfor-
mance decrease. As the number of marked regions increases,
PrivateEye struggles to scale and the usability suffers.

In comparison, the plots for ePrivateEye displayed in Fig-
ure 15 show that the median frame rate across each network
configuration remains at 30 fps. This shows that performing
the processing on the server does not add any additional la-
tency as the number of marked regions increases. For the
video with 3 marked regions, the median performance for
ePrivateEye offers a 500% improvement over the on-device
configuration (30 fps v. 5 fps). These results show that ePriva-
teEye can continue to offer realtime processing rates as the
complexity of the operation increases.

7 CASE STUDY: METRO
We wanted to investigate the impact of poor network condi-
tions on the performance of ePrivateEye. Because the fast
path configuration represents a near optimal connection be-
tween the AP and server, we wanted to measure the perfor-
mance of ePrivateEye under less than ideal conditions. To
create these conditions, we induce both latency and packet
loss on the egress connection of the server. We then leverage
the use of the SDN to eliminate all external sources of latency
and packet loss, in order to ensure that the only source of the
performance decay is from the ingress location. This allows
us to construct a slow path and lossy path across the metro
network configuration.

We introduce latency and packet loss to the network using
netem, a Linux package designed to perform wide area net-
work emulation [9]. We construct the slow path by adding
latency to the network in increments of 10ms, iterating from

0 to 70ms. We construct the lossy path by adding random
packet loss to the network in increments of 1%, iterating from
0 to 10%. We perform replay using the video containing 2
marked regions, and collect fps processing data for each path
configuration.

7.1 Impact of Packet Loss
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Figure 16: Impact of packet loss on the rate of frame de-
livery.

Because the client and server maintain several TCP connec-
tions, adding packet loss on the ingress link causes the client
to start sending retransmission packets. As the loss increases
from 1 to 10%, the amount of retransmission traffic increases
proportionally. This has the effect of adding latency to the
application since the server will not be able to process the
frame until it arrives completely. Figure 16 shows the perfor-
mance results for ePrivateEye runninng across the lossy path
in the metro network configuration. As can be observed, the
impact of packet loss on the network can be observed almost
instantaneously as the loss rate increases from 1 to 2%. This
causes the median fps rate to drop from 30 fps to 26 fps. At
5% packet loss, the performance of ePrivateEye has dropped
by 25% from 30 fps to 22.5 fps, and by 10% packet loss, the
performance has dropped by 50% to ≈ 15 fps. The results
indicate a nearly linear relationship between packet loss and
number of frames delivered per second. Still, ePrivateEye is
able to outperform the on-device configuration all the way up
to 8% packet loss, and stays competitive through 10% packet
loss.

In addition to the median fps decreasing, as the amount
of packet loss increases, the variance between fps greatly
increases. This has the visual effect of adding a large amount
of judder to the experience of using the camera app. Since
packet loss is not uniform, this creates periods of both low
and high fps causing the camera app, at times, to appear laggy
before returning to realtime.
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Figure 17: Impact of network delay on the rate of frame
delivery.

7.2 Impact of Network Delay
Figure 17 shows the performance results for ePrivateEye run-
ninng across the slow path in the metro network configuration.
As can be observed, ePrivateEye maintains a median perfor-
mance of 30 fps as the latency increases from 0 to 30 ms.
When the latency increases from 30 to 40 ms of delay, the
median performance drops by 42% to ≈ 17.5 fps. The reason
for this drop is due to the processing rate of frames within the
camera service. Because the camera service receives frames
at a rate of 30 fps from the camera sensor, ePrivateEye has
approximately 33 ms to perform the remote processing before
the next frame is received. As long as the client and server are
able to complete the data exchange within this time frame, the
performance will not suffer. As soon as the latency eclipses
this window, the performance of ePrivateEye becomes dic-
tated by the latency of the network.

Although the performance starts to decay after this point,
ePrivateEye is able to produce decent performance results.
With 50 ms of delay, ePrivateEye still performs at a median
rate of ≈ 15 fps, which is competitive with the on-device
performance as can be observed in Figure 15. This result
show that even under networks with high latency (≈ 30 ms),
ePrivateEye is able to produce strong performance results.

8 ePrivateEye IN THE CLOUD
PrivateEye is designed to protect sensitive information from
being accidentally captured by the camera apps. ePrivateEye
extends the original system to provide realtime performance
without compromising the privacy guarantees. Therefore, it is
of utmost importance that the edge computing resource used
for running the ePrivateEye server is trusted. We envisioned
a futuristic scenario, where a trusted cloud service provider
aims to provide the benefits of ePrivateEye to the masses by
running the server component on its secured cloud infrastruc-
ture. We are interested to see the rate of frame delivery in
such a scenario.

ePrivateEye
Client

ePrivateEye
Server

Trusted
Network

Untrusted
Network

SSH Tunnel
Access
Point

Figure 18: The secure channel setup to provide connec-
tivity between the ePrivateEye client on Duke’s trusted
network and ePrivateEye server on an instance of AWS
server.

For this, we used the AWS cloud infrastructure and config-
ured the ePrivateEye server on an instance of AWS machine.
Ideally, when the camera data leaves the smartdevice for pro-
cessing on a cloud infrastructure, it should be encrypted. To
emulate this scenario we setup Nexus 5 (client) to connect to
an AP (within Duke University’s network) and established
a SSH Tunnel from the AP to the AWS server (Figure 18).
We measured the rate at which the frames were delivered to
the app for a video with one marked region on a whiteboard
under all the three camera motion setting.
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Figure 19: FPS achieved by configuring ePrivateEye
server on an instance of AWS server.

Figure 19 shows that under the described setup the median
rate at which frames are delivered is 23. This is due to the fact
that SSH tunnel adds an additional computation burden of en-
cryption and decryption. We noticed significant aberrations in
processing delay during the still and scan recordings, showing
how the additional network overhead can be unpredictable at
times. Overall, this is a very encouraging result as it shows
that ePrivateEye can give an acceptable performance under
an additional layer of security.

9 DISCUSSION
Impact of Offloading: The evaluation results of ePrivateEye
show that by offloading to the edge, the performance of the
original PrivateEye can be vastly improved. In this config-
uration, the system achieves a frame rate of 30 fps and a
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precision of 100%. At the same time, the CPU load decreases
by 5% from running ePrivateEye on-device, while the mem-
ory consumption remains unchanged. The only performance
limitations include a slight increase in power consumption of
8.3%. The primary improvement over PrivateEye can be ob-
served by ePrivateEye’s ability to handle scaling. ePrivateEye
maintains a high level of performance while tracking multiple
marked regions, whereas PrivateEye’s performance degrades
significantly when there’s more than one region. With such a
performance, ePrivateEye enables real-time camera apps to
function smoothly while providing high privacy guarantees.
Managing Network Conditions: The network configuration
edge is well suited for home network, while building and
metro configurations can be adopted in an enterprise setting.
By varying the network configurations, we have explored
the network conditions that might affect the performance of
ePrivateEye. The results show that regardless of the offload-
ing configuration, ePrivateEye will provide the performance
guarantees to implement and scale the system. The lossy net-
work evaluation shows ePrivateEye can sustain a packet loss
up to 8% and a network delay up to 40 ms while delivering
frames at the median rate of 20 per second. To ensure optimal
performance under varying conditions, SDN offers a viable
solution by providing greater control over path selection.
Deep Learning: While the edge configuration offers the
best performance, the metro configuration offers the most
promising results. The remote server within this configuration
presents the possibility of running heavier computations that
require GPUs to run e.g. deep neural networks. The size of the
input on the GPU represented an insignificant load, and was
easily handled. Advanced computer vision techniques cou-
pled with deep learning can classify several classes of objects
or shapes, but require this level of computing to operate at
real-time speeds. Because the marker detection is completely
run on the server, classifiers can be added or updated without
changing anything on the client side.

10 RELATED WORK
Mobile Offloading: MAUI [7] and LEO [12] make runtime
scheduling decisions about how to split processing between
on-device and remote execution. Both systems solve an In-
teger Linear Program (ILP) that encapsulates the context in
which the system is running, to determine how to best distrib-
ute processing. Rather than performing a runtime decision,
ePrivateEye offloads the most computationally expensive por-
tion of the image processing pipeline. This fixed offloading
approach avoids the complexity of synchronizing client and
the server. Further, based on the quality of network, ePrivate-
Eye can be quickly reconfigured to switch between on-device
and remote processing.

Kahawai [8], a platform for high-quality gaming, performs
collaborative rendering between server and client. Within this

work, both the client and server execute the application, and
if the server finishes before the client, the client will stop
processing and incorporate the completed results from the
server. ePrivateEye avoids the redundancy of performing the
remote and local processing concurrently due to the high
overhead imposed by the local processing.

CloneCloud [6] transforms mobile applications into a dis-
tributed system by selecting a single thread running on the
device to be executed in a clone running remotely. Because
the most computationally expensive component of ePrivate-
Eye is known ahead of time, this section is offloaded entirely
rather than having to make a runtime decision.
Network Optimization: Systems relying on remote process-
ing are dependent on network conditions. IC-Cloud [20] pre-
dicts network conditions using signal strength and histor-
ical information to make lightweight offloading decisions.
Whereas IC-Cloud makes internal decisions to combat poor
network quality, we show that ePrivateEye maintains a strong
performance across varying network conditions.

SDNs have become ubiquitous in several enterprise and
campus networks, and provide more control over the data
flow. ECOS [11] utilizes software defined networking to con-
trol mobile application offloading with a focus on ensuring
privacy, fair resource allocation, and enforcing security con-
straints. ECOS is implemented as an application running
within a NOX controller, and communicates with mobile
clients seeking to perform application offloading with certain
privacy and performance requirements. While ECOS primar-
ily focuses on security, we utilize SDN within our network to
minimize network latency.

11 CONCLUSION
This paper presents ePrivateEye, an edge-enabled version
of PrivateEye which offloads the computationally intensive
marker detection to an edge server. ePrivateEye outperforms
the existing system and achieves realtime performance (30
fps) while providing high security (precision 1) and accept-
able app usability (recall ≥ 0.86) at a small cost of increased
energy consumption (8%). In addition, we perform case stud-
ies to show that ePrivateEye can be adopted for large met-
ropolitan areas as it can resist packet losses up to 10% and
network delays up to 30 ms.
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